Edge AI for IoT Devices

Deploying machine learning models on resource-constrained embedded systems

Introduction

This project focuses on optimizing and deploying machine learning models on edge devices, enabling intelligent decision-making directly on IoT hardware without cloud connectivity. By combining model compression techniques with hardware acceleration, we achieve real-time AI inference on devices with limited computational resources.

Project Goals

  • Ultra-low Power: ML inference under 1 mW power consumption
  • Real-time Performance: Sub-10ms inference latency
  • Small Footprint: Models under 100 KB
  • Hardware Agnostic: Support for various microcontrollers and FPGAs

Technical Approach

1. Model Optimization Techniques

Quantization

  • 8-bit and 4-bit integer quantization
  • Dynamic range quantization
  • Quantization-aware training

Pruning

  • Structured and unstructured pruning
  • Magnitude-based pruning
  • Lottery ticket hypothesis

Knowledge Distillation

  • Teacher-student networks
  • Feature matching
  • Attention transfer

2. Hardware Platforms

Microcontrollers

  • STM32 Series: Cortex-M4/M7 with DSP instructions
  • ESP32: Dual-core with WiFi/Bluetooth
  • nRF52840: BLE-enabled with Cortex-M4F

FPGAs

  • Lattice iCE40: Ultra-low power FPGA
  • Xilinx Spartan-7: Cost-effective acceleration
  • Intel Cyclone: Edge AI optimized

3. Deployment Pipeline

# Model optimization and deployment workflow
┌─────────────────┐     ┌─────────────────┐     ┌─────────────────┐
│ Training Model  │ --> │   Optimization  │ --> │   Compilation   │
│   (PyTorch)     │     │  (Quantization) │     │  (TensorFlow    │
└─────────────────┘     └─────────────────┘     │      Lite)      │
                                                 └─────────────────┘
                                                          │
                                                          v
┌─────────────────┐     ┌─────────────────┐     ┌─────────────────┐
│  Verification   │ <-- │  Hardware       │ <-- │  C++ Runtime    │
│  & Testing      │     │  Deployment     │     │  Generation     │
└─────────────────┘     └─────────────────┘     └─────────────────┘

Applications

1. Predictive Maintenance

Real-time vibration analysis for industrial equipment:

  • Anomaly detection using autoencoders
  • Remaining useful life prediction
  • Edge-based fault classification

2. Smart Agriculture

Edge AI system for crop health monitoring using multispectral imaging

Features:

  • Disease detection from leaf images
  • Soil moisture prediction
  • Pest identification

3. Healthcare Monitoring

Wearable devices with on-device ML:

  • ECG anomaly detection
  • Fall detection using accelerometers
  • Sleep pattern analysis

Performance Benchmarks

Model Original Size Optimized Size Accuracy Loss Inference Time Power Usage
MobileNet V2 14 MB 480 KB < 2% 8 ms 0.8 mW
TinyBERT 110 MB 890 KB < 3% 12 ms 1.2 mW
Custom CNN 5 MB 95 KB < 1% 3 ms 0.5 mW

Code Examples

Model Quantization

import tensorflow as tf

def quantize_model(model_path):
    """Quantize a TensorFlow model for edge deployment"""
    converter = tf.lite.TFLiteConverter.from_saved_model(model_path)

    # Enable optimizations
    converter.optimizations = [tf.lite.Optimize.DEFAULT]

    # Set representative dataset for calibration
    converter.representative_dataset = representative_dataset_gen

    # Ensure integer only operations
    converter.target_spec.supported_ops = [
        tf.lite.OpsSet.TFLITE_BUILTINS_INT8
    ]
    converter.inference_input_type = tf.int8
    converter.inference_output_type = tf.int8

    # Convert model
    tflite_model = converter.convert()

    return tflite_model

Embedded Inference

// C++ inference engine for microcontrollers
class EdgeInference {
private:
    const tflite::Model* model;
    tflite::MicroInterpreter* interpreter;
    TfLiteTensor* input;
    TfLiteTensor* output;

public:
    EdgeInference(const uint8_t* model_data) {
        model = tflite::GetModel(model_data);

        // Create interpreter
        static tflite::MicroMutableOpResolver<10> resolver;
        resolver.AddConv2D();
        resolver.AddMaxPool2D();
        resolver.AddFullyConnected();
        resolver.AddSoftmax();

        static tflite::MicroInterpreter static_interpreter(
            model, resolver, tensor_arena, kTensorArenaSize
        );
        interpreter = &static_interpreter;

        interpreter->AllocateTensors();
        input = interpreter->input(0);
        output = interpreter->output(0);
    }

    float* predict(float* input_data) {
        // Copy input data
        memcpy(input->data.f, input_data, input->bytes);

        // Run inference
        interpreter->Invoke();

        return output->data.f;
    }
};

Development Tools

  • TensorFlow Lite Micro: For microcontroller deployment
  • Apache TVM: Hardware-agnostic compilation
  • ONNX Runtime: Cross-platform inference
  • Edge Impulse: End-to-end edge ML platform
  • STM32Cube.AI: STM32-specific optimization

Future Work

  1. Neuromorphic Computing: Exploring spiking neural networks
  2. Federated Learning: Privacy-preserving model updates
  3. Hardware-Software Co-design: Custom accelerators
  4. Energy Harvesting: Self-powered ML devices

Resources

Collaboration

This project is open for collaboration. If you’re interested in:

  • Contributing code or documentation
  • Testing on new hardware platforms
  • Sharing use cases or applications

Please reach out via email or open an issue on GitHub!