Edge AI for IoT Devices
Deploying machine learning models on resource-constrained embedded systems
Introduction
This project focuses on optimizing and deploying machine learning models on edge devices, enabling intelligent decision-making directly on IoT hardware without cloud connectivity. By combining model compression techniques with hardware acceleration, we achieve real-time AI inference on devices with limited computational resources.
Project Goals
- Ultra-low Power: ML inference under 1 mW power consumption
- Real-time Performance: Sub-10ms inference latency
- Small Footprint: Models under 100 KB
- Hardware Agnostic: Support for various microcontrollers and FPGAs
Technical Approach
1. Model Optimization Techniques
Quantization
- 8-bit and 4-bit integer quantization
- Dynamic range quantization
- Quantization-aware training
Pruning
- Structured and unstructured pruning
- Magnitude-based pruning
- Lottery ticket hypothesis
Knowledge Distillation
- Teacher-student networks
- Feature matching
- Attention transfer
2. Hardware Platforms
Microcontrollers
- STM32 Series: Cortex-M4/M7 with DSP instructions
- ESP32: Dual-core with WiFi/Bluetooth
- nRF52840: BLE-enabled with Cortex-M4F
FPGAs
- Lattice iCE40: Ultra-low power FPGA
- Xilinx Spartan-7: Cost-effective acceleration
- Intel Cyclone: Edge AI optimized
3. Deployment Pipeline
# Model optimization and deployment workflow
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Training Model │ --> │ Optimization │ --> │ Compilation │
│ (PyTorch) │ │ (Quantization) │ │ (TensorFlow │
└─────────────────┘ └─────────────────┘ │ Lite) │
└─────────────────┘
│
v
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Verification │ <-- │ Hardware │ <-- │ C++ Runtime │
│ & Testing │ │ Deployment │ │ Generation │
└─────────────────┘ └─────────────────┘ └─────────────────┘
Applications
1. Predictive Maintenance
Real-time vibration analysis for industrial equipment:
- Anomaly detection using autoencoders
- Remaining useful life prediction
- Edge-based fault classification
2. Smart Agriculture
Edge AI system for crop health monitoring using multispectral imaging
Features:
- Disease detection from leaf images
- Soil moisture prediction
- Pest identification
3. Healthcare Monitoring
Wearable devices with on-device ML:
- ECG anomaly detection
- Fall detection using accelerometers
- Sleep pattern analysis
Performance Benchmarks
| Model | Original Size | Optimized Size | Accuracy Loss | Inference Time | Power Usage |
|---|---|---|---|---|---|
| MobileNet V2 | 14 MB | 480 KB | < 2% | 8 ms | 0.8 mW |
| TinyBERT | 110 MB | 890 KB | < 3% | 12 ms | 1.2 mW |
| Custom CNN | 5 MB | 95 KB | < 1% | 3 ms | 0.5 mW |
Code Examples
Model Quantization
import tensorflow as tf
def quantize_model(model_path):
"""Quantize a TensorFlow model for edge deployment"""
converter = tf.lite.TFLiteConverter.from_saved_model(model_path)
# Enable optimizations
converter.optimizations = [tf.lite.Optimize.DEFAULT]
# Set representative dataset for calibration
converter.representative_dataset = representative_dataset_gen
# Ensure integer only operations
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS_INT8
]
converter.inference_input_type = tf.int8
converter.inference_output_type = tf.int8
# Convert model
tflite_model = converter.convert()
return tflite_model
Embedded Inference
// C++ inference engine for microcontrollers
class EdgeInference {
private:
const tflite::Model* model;
tflite::MicroInterpreter* interpreter;
TfLiteTensor* input;
TfLiteTensor* output;
public:
EdgeInference(const uint8_t* model_data) {
model = tflite::GetModel(model_data);
// Create interpreter
static tflite::MicroMutableOpResolver<10> resolver;
resolver.AddConv2D();
resolver.AddMaxPool2D();
resolver.AddFullyConnected();
resolver.AddSoftmax();
static tflite::MicroInterpreter static_interpreter(
model, resolver, tensor_arena, kTensorArenaSize
);
interpreter = &static_interpreter;
interpreter->AllocateTensors();
input = interpreter->input(0);
output = interpreter->output(0);
}
float* predict(float* input_data) {
// Copy input data
memcpy(input->data.f, input_data, input->bytes);
// Run inference
interpreter->Invoke();
return output->data.f;
}
};
Development Tools
- TensorFlow Lite Micro: For microcontroller deployment
- Apache TVM: Hardware-agnostic compilation
- ONNX Runtime: Cross-platform inference
- Edge Impulse: End-to-end edge ML platform
- STM32Cube.AI: STM32-specific optimization
Future Work
- Neuromorphic Computing: Exploring spiking neural networks
- Federated Learning: Privacy-preserving model updates
- Hardware-Software Co-design: Custom accelerators
- Energy Harvesting: Self-powered ML devices
Resources
Collaboration
This project is open for collaboration. If you’re interested in:
- Contributing code or documentation
- Testing on new hardware platforms
- Sharing use cases or applications
Please reach out via email or open an issue on GitHub!